C 61216

N IA TTA

(Pages : 4)

- - - A)

Name.....

Reg. No.....

FOURTH SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2019

(CUCBCSS-UG)

Common Course for LRP

MA T4 B04—THEORY OF EQUATION, MATRICES AND VECTOR CALCULUS Time : Three Hours Maximum : 80 Marks

Part A (Objective Type)

Answer all **twelve** questions. Each question carries 1 mark.

1. If α , β , γ are the roots of $x^3 - px^2 + qx - r = 0$ find the value of $\sum \alpha^2$.

2. Define a reciprocal equation.

3. State Descarte's rule of signs.

4. If α , β , γ are the roots of f(x) = 0, write the equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$.

- 5. Rank of the matrix $A = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 4 & 6 \\ 0 & 6 & 9 \end{bmatrix}$ is
- 6. If A is a non-zero column matrix and B is a non-zero row matrix then rank (AB) is
- 7. The system AX = 0 in *n* unknowns has a non-trivial solution if _____.
- 8. For what value of a the system of equations ax + y = 1, x + 2y = 3, 2x + 3y = 5 are consistent.
- 10. Find the parametric equation of a line through the point (3, -4, -1) and parallel to the vector i + j + k.

- 11. Find the unit vector tangent to the curve $r(t) = (2 \cos t) \mathbf{i} + (2 \sin t) \mathbf{j} + \sqrt{5t} \mathbf{k}, 0 \le t \le \pi$.
- 12. Write the equations relating rectangular and cylindrical co-ordinates.

 $(12 \times 1 = 12 \text{ mark})$

Part B (Short Answer Type)

Answer any nine questions. Each question carries 2 marks.

- 13. Solve $x^3 12x^2 + 39x^2 28 = 0$ whose roots are in arithmetic progression.
- 14. Transform $x^3 6x^2 + 5x + 12 = 0$ into an equation lacking the second term.
- 15. If α , β , γ , δ are the roots of $x^4 + px^3 + qx^2 + rx + s = 0$ evaluate $\sum \alpha^2 \beta \gamma$.

16. If
$$A = \begin{bmatrix} 1 & 5 & 2 \\ 3 & 2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 2 & 1 \end{bmatrix}$, then rank of AB is :

- 17. Under what condition the rank of the matrix $A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & x \end{bmatrix}$ is 3.
- 18. Show that corresponding to a characteristic vector X of a square matrix A, there exist one and only one characteristic root.
- 19. If A is non-singular, prove that the eigen values of A^{-1} are the reciprocals of the eigen values of A.
- 20. Show that the characteristic roots of a Hermitian matrices are all real.
- 21. Find the velocity and acceleration vectors of $r(t) = (t + 1)\mathbf{i} + (t^2 1)\mathbf{j}$ at t = 1.
- 22. Find a spherical co-ordinate equation for the sphere $x^2 + y^2 + (z 1)^2 = 1$.
- 23. Evaluate $\int_{0}^{\pi} ((\cos t) \mathbf{i} + \mathbf{j} (2t) \mathbf{k}) dt.$
- 24. Find the curvature of $r(t) = t \mathbf{i} + (\ln \cos t) \mathbf{j}, -\pi/2 < t < \pi/2$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any **six** questions. Each question carries 5 marks.

25. If α , β , γ are roots of $x^3 - x - 1 = 0$, find the equation whose roots are

$$\frac{1+\alpha}{1-\alpha}, \frac{1+\beta}{1-\beta}, \frac{1+\gamma}{1-\gamma}$$
 Hence write down the values of $\sum \left(\frac{1+\alpha}{1-\alpha}\right)$

26. If α , β , γ are roots of $x^2 + qx + r = 0$, find the equation whose roots are $(\beta - \gamma)^2$, $(\gamma - \alpha)^2$, $(\alpha - \beta)^2$.

27. Solve the equation $x^4 + 6x^3 - 5x^2 + 6x + 1 = 0$.

28. Reduce the matrix A to its normal form and hence find the rank of A where :

A =	0	1	- 3	-1]	
	1	0	1	1	
	3	1	0	2	•
	1	1	-2	0	

29. Show that rank (AA') = rank (A).

30. Find the latent roots and latent vectors of the matrix $A = \begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$.

31. Find the point where the line $x = \frac{8}{3} + 2t$, y = -2t, z = 1 + t intersects the plane 3x + 2y + 6z = 6.

32. Find the distance from the point S (1, 1, 5) to the line L : x = 1 + t, y = 3 - t, z = 2t.

33. Using matrix method solve the equations :

x + y + z = 6x - y - z = 22x + y - z = 1.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any two questions. Each question carries 10 marks.

34. Solve the equation $x^3 - 3x^2 + 12x + 16 = 0$ by Cardan's method.

35. Show that the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ satisfies Cayley-Hamilton theorem. Hence obtain A-1

36. Find the binormal vector and torsion for the space curve $r(t) = (3 \sin t) \mathbf{i} + (3 \cos t) \mathbf{j} + 4t\mathbf{k}$ $(2 \times 10 = 20 \text{ marks})$

D 41959

Name.....

Reg. No.....

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2018

(Pages : 4)

(CUCBCSS—UG)

Mathematics

MAT 4B 04—THEORY OF EQUATIONS MATRICES AND VECTOR CALCULUS Time : Three Hours Maximum : 80 Marks

Part A (Objective Type)

Answer all the twelve questions. Each question carries 1 mark.

1. If α , β , γ are the roots of $2x^3 + 3x^2 - x - 1 = 0$. Find the equation whose roots are $\frac{1}{2\alpha}, \frac{1}{2\beta}, \frac{1}{2\gamma}$.

- 2. State the Fundamental theorem of algebra.
- 3. If α , β , γ are the roots of $ax^3 + 3bx^2 + 3cx + d = 0$. Find the value of :

 $(\beta - \gamma)(\gamma - \alpha) + (\gamma - \alpha)(\alpha - \beta) + (\alpha - \beta)(\beta - \gamma).$

4. What do you mean by reciprocal equation of second type ? Give example.

5. What is the rank of the identity matrix of order 20?

- 6. If $A = [a_{ij}]$ is an $m \times n$ matrix and $a_{ij} = 7$ for all i, j then rank of A is ______.
- 7. A system of *m* homogeneous linear equations in *n* unknowns has only trivial solution if ————.
- 8. For what values of a the system of equations ax + y = 1, x + 2y = 3, 2x + 3y = 5 are consistent.
- 9. If the number of variables in a non-homogeneous system AX = B is n then the system possesses a unique solution if ______.
- 10. Find the parametric equation of a line through P (3, -4, -1) and parallel to the vector i + j + k.
- 11. Find the unit vector tangent to the curve $r(t) = (\cos^3 t) j + (\sin^3 j) k, 0 \le t \le \frac{\pi}{2}$.
- 12. Write equations relating rectangular and cylindrical co-ordinates.

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

- 13. Solve $4x^3 24x^2 + 23x + 18 = 0$. Given that the roots are in arithmatic progression.
- 14. Transform $x^3 6x^2 + 5x + 12 = 0$ into an equation lacking second term.
- 15. If α , β , γ are the roots of $x^3 + qx + r = 0$. Find the equation whose roots are $(\beta \alpha)^2$, $(\gamma \alpha)^2$, $(\alpha \beta)^2$.

16. If
$$A = \begin{pmatrix} -2 & -1 \\ 5 & 4 \end{pmatrix}$$
. Find A^{-1} .

- 17. Prove that the characteristic roots of Hermitian matrix are real.
- 18. If α is an eigen value of a non-singular matrix A, prove that $\frac{|A|}{\alpha}$ is an eigen value of adj A.
- 19. Show that the product of characteristic roots of a square matrix of order n is equal to the determinant of the matrix.
- 20. Find the value of a for which r(A) = 3 where $A = \begin{pmatrix} 2 & 4 & 4 \\ 3 & 1 & 2 \\ 1 & 0 & a \end{pmatrix}$.
- 21. Find the velocity and acceleration vectors of $r(t) = (3\cos t)i + (3\sin t)j + t^2k$.
- 22. Find a Cartesian equation for the surface $z = r^2$. And identify the surface.

23. Evaluate
$$\int_{-\pi}^{\pi} \left[(\sin t) i + (1 + \cos t) j + (\sec^2 t) k \right] dt.$$

24. Find the normal vector for $r(t) = (a \cos t)i + (a \sin t)j + bk$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essays)

3

Answer any six questions. Each question carries 5 marks.

25. If α, β, γ are the roots of $x^3 - x - 1 = 0$. Find the equation whose roots are $\frac{1+\alpha}{1-\alpha}, \frac{1+\beta}{1-\beta}, \frac{1+\gamma}{1-\gamma}$.

- 26. Solve the equation $x^2 12x 65 = 0$ by Cardan's method.
- 27. Solve $x^3 + 6x^2 + 3x + 18 = 0$.
- 28. Prove that the rank of a non-singular matrix is equal to the rank of its reciprocal matrix.

	125	4	-2	3)	
29.	Find the rank of	2	0	1	
		3	-1	2	•
		1	-1	1	

30. Using matrix method solve :

x + 2y + z = 2 3x + y - 2z = 1 4x - 3y - z = 32x + 4y + 2z = 4.

31. Find the point in which the line x = 1-t, y = 3t, z = 1+t intersects the plane 2x - y + 3z = 6.

32. Find the distance from the point S (0, 0, 1, 2) to the line x = 4t, y = -2t, z = 2t.

33. Find the eigen values and eigen vectors of
$$\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$$
.

 $(6 \times 5 = 30 \text{ marks})$

4

Part D

Answer any two questions. Each question carries 10 marks.

- 34. Solve the equation $x^5 5x^4 + 9x^3 9x^2 + 5x 1 = 0$.
- 35. Verify Cayley-Hamilton theorem for the matrix $\mathbf{A} = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & 1 \\ 0 & 5 & -1 \end{pmatrix}$ and hence evaluate \mathbf{A}^{-1} .

36. Find the binormal vector and torsion for the space curve $r(t) = (e^t \cos t)i + (e^t \sin t)j + 2k$.

 $(2 \times 10 = 20 \text{ marks})$

C 61216

N IA TTA

(Pages : 4)

- - - A)

Name.....

Reg. No.....

FOURTH SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2019

(CUCBCSS-UG)

Common Course for LRP

MA T4 B04—THEORY OF EQUATION, MATRICES AND VECTOR CALCULUS Time : Three Hours Maximum : 80 Marks

Part A (Objective Type)

Answer all **twelve** questions. Each question carries 1 mark.

1. If α , β , γ are the roots of $x^3 - px^2 + qx - r = 0$ find the value of $\sum \alpha^2$.

2. Define a reciprocal equation.

3. State Descarte's rule of signs.

4. If α , β , γ are the roots of f(x) = 0, write the equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$.

- 5. Rank of the matrix $A = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 4 & 6 \\ 0 & 6 & 9 \end{bmatrix}$ is
- 6. If A is a non-zero column matrix and B is a non-zero row matrix then rank (AB) is
- 7. The system AX = 0 in *n* unknowns has a non-trivial solution if _____.
- 8. For what value of a the system of equations ax + y = 1, x + 2y = 3, 2x + 3y = 5 are consistent.
- 10. Find the parametric equation of a line through the point (3, -4, -1) and parallel to the vector i + j + k.

- 11. Find the unit vector tangent to the curve $r(t) = (2 \cos t) \mathbf{i} + (2 \sin t) \mathbf{j} + \sqrt{5t} \mathbf{k}, 0 \le t \le \pi$.
- 12. Write the equations relating rectangular and cylindrical co-ordinates.

 $(12 \times 1 = 12 \text{ mark})$

Part B (Short Answer Type)

Answer any nine questions. Each question carries 2 marks.

- 13. Solve $x^3 12x^2 + 39x^2 28 = 0$ whose roots are in arithmetic progression.
- 14. Transform $x^3 6x^2 + 5x + 12 = 0$ into an equation lacking the second term.
- 15. If α , β , γ , δ are the roots of $x^4 + px^3 + qx^2 + rx + s = 0$ evaluate $\sum \alpha^2 \beta \gamma$.

16. If
$$A = \begin{bmatrix} 1 & 5 & 2 \\ 3 & 2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 2 & 1 \end{bmatrix}$, then rank of AB is :

- 17. Under what condition the rank of the matrix $A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & x \end{bmatrix}$ is 3.
- 18. Show that corresponding to a characteristic vector X of a square matrix A, there exist one and only one characteristic root.
- 19. If A is non-singular, prove that the eigen values of A^{-1} are the reciprocals of the eigen values of A.
- 20. Show that the characteristic roots of a Hermitian matrices are all real.
- 21. Find the velocity and acceleration vectors of $r(t) = (t + 1)\mathbf{i} + (t^2 1)\mathbf{j}$ at t = 1.
- 22. Find a spherical co-ordinate equation for the sphere $x^2 + y^2 + (z 1)^2 = 1$.
- 23. Evaluate $\int_{0}^{\pi} ((\cos t) \mathbf{i} + \mathbf{j} (2t) \mathbf{k}) dt.$
- 24. Find the curvature of $r(t) = t \mathbf{i} + (\ln \cos t) \mathbf{j}, -\pi/2 < t < \pi/2$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any **six** questions. Each question carries 5 marks.

25. If α , β , γ are roots of $x^3 - x - 1 = 0$, find the equation whose roots are

$$\frac{1+\alpha}{1-\alpha}, \frac{1+\beta}{1-\beta}, \frac{1+\gamma}{1-\gamma}$$
 Hence write down the values of $\sum \left(\frac{1+\alpha}{1-\alpha}\right)$

26. If α , β , γ are roots of $x^2 + qx + r = 0$, find the equation whose roots are $(\beta - \gamma)^2$, $(\gamma - \alpha)^2$, $(\alpha - \beta)^2$.

27. Solve the equation $x^4 + 6x^3 - 5x^2 + 6x + 1 = 0$.

28. Reduce the matrix A to its normal form and hence find the rank of A where :

A =	0	1	- 3	-1]	
	1	0	1	1	
	3	1	0	2	•
	1	1	-2	0	

29. Show that rank (AA') = rank (A).

30. Find the latent roots and latent vectors of the matrix $A = \begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$.

31. Find the point where the line $x = \frac{8}{3} + 2t$, y = -2t, z = 1 + t intersects the plane 3x + 2y + 6z = 6.

32. Find the distance from the point S (1, 1, 5) to the line L : x = 1 + t, y = 3 - t, z = 2t.

33. Using matrix method solve the equations :

x + y + z = 6x - y - z = 22x + y - z = 1.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any two questions. Each question carries 10 marks.

34. Solve the equation $x^3 - 3x^2 + 12x + 16 = 0$ by Cardan's method.

35. Show that the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ satisfies Cayley-Hamilton theorem. Hence obtain A-1

36. Find the binormal vector and torsion for the space curve $r(t) = (3 \sin t) \mathbf{i} + (3 \cos t) \mathbf{j} + 4t\mathbf{k}$ $(2 \times 10 = 20 \text{ marks})$